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Abstract
Earlier studies of a parametrized class of models, the shortcut models,
whose fractal dimension transitions between integer values, indicated that the
transition occurs infinitely sharply at the parameter value p = 0, as the system
size increases to infinity. In this work, we explain the cause as being due to
the combinatorially large increase in the available number of paths connecting
a pair of points as the path length is increased.

PACS numbers: 05.45.Df, 89.75.HC, 05.50.+q

1. Introduction

The shortcut model was introduced [1, 2] while studying the dimension [3] of complex
networks (graphs) [4–13]. The model interpolates between discrete regular lattices. It was
observed that the fractal dimension apparently transitions sharply [14, 15] from one to two
dimensions at the probability of shortcuts p = 0. In this work we provide an explanation of
this property. The sharp transition occurs because of the combinatorially large increase in the
available number of paths connecting a pair of points as the path length is increased. We also
study the mean path length and consider some generalizations of the model.

The model is defined by starting with a regular discrete lattice of dimension d with
periodic boundary conditions, and adding shortcuts between remote vertices in the lattice.
If the shortcuts connect vertices a constant distance apart in one of the d dimensions, then
the resulting complex network transitions from a d-dimensional regular lattice to a (d + 1)-
dimensional regular lattice as the number of shortcuts is increased. The case of the transition
from a one-dimensional to a two-dimensional lattice has been well studied.

Section 2 reviews the shortcut model and proposes a possible generalization. It also
reviews the complex network zeta function. Section 3 studies the mean path length. Section 4
presents the proof that the dimension transitions infinitely sharply in the model as p increases
from zero. Finally the conclusions are presented.

1 http://www.geocities.com/oshanker/graphdimension.htm.
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Figure 1. Shortcut model, p = 0.

2. Shortcut model

In this section we give a brief definition of the shortcut model [1, 2], and we specify a possible
generalization. The model has fractal dimension as defined by the complex network zeta
function [2], and transitions from a one-dimensional system to a two-dimensional system. The
starting network is a one-dimensional lattice of N vertices with periodic boundary conditions.
Each vertex is joined to its neighbors on either side, which results in a system with N edges.
The network is extended by taking each node in turn and, with probability p, adding an edge
to a new location m nodes ahead. We require that N � m � 1, say m = √

N . The graphs
are parametrized by

size = N, (1)

shortcut distance = m (2)

and

shortcut probability = p. (3)

When the shortcut probability p = 0 (figure 1), we have a one-dimensional regular lattice
of size N. The nodes are connected by edges represented by the arcs of the circle. When p = 1
(figure 2), every node is connected by a shortcut edge to a new location. Each node now has
edges in two directions, the first along the original direction (on the circle), and the second
along the shortcut edges. The graph is essentially a two-dimensional graph with m and N/m

nodes in each direction. For p between 0 and 1 (figure 3), we have a graph which interpolates
between the one- and two-dimensional systems.

It is interesting to note the difference between the shortcut model and the ‘small-world
model’ of Watts and Strogatz [16–18]. In the small-world model also one starts with a regular
lattice and adds shortcuts with probability p. However, the shortcuts are not constrained to
connect to a node a fixed distance ahead. Instead, the other end of the shortcut can connect to
any randomly chosen node. As a result, the small-world model tends to a random graph rather
than a two-dimensional graph as the shortcut probability is increased.
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Figure 2. Shortcut model, p = 1.

Figure 3. Shortcut model, 0 < p < 1.

One possible generalization of the shortcut model is to have a hierarchy of shortcuts. For
example, the network can be extended by taking each node in turn and, with probability p1,
adding an edge to a new location m1 nodes ahead, and with probability p2, adding an edge to
a new location m2 nodes ahead. We require that N � m1 � m2 � 1. The dimension of the
extended model would lie between d and d + 2, where d is the dimension of the starting lattice.

The dimension of a complex network is defined as the value at which the complex network
zeta function transitions from non-convergence to convergence in the infinite system limit.
For completeness, the complex network zeta function is defined below. The complex network
zeta function ζG(α) is defined as

ζG(α) := 1

N

∑
i

∑
j �=i

r−α
ij , (4)
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where N is the graph size measured by the number of nodes and rij is the distance between nodes
i and j . The distance is measured by the number of edges along the shortest path connecting
two nodes. One could generalize this by considering weighted edges. The definition
equation (4) can be expressed as a weighted sum over the node distances. The graph surface
function, S(r), is defined as the number of nodes which are exactly at a distance r from a given
node, averaged over all nodes of the network. This gives the Dirichlet series expression for
the complex network zeta function:

ζG(α) =
∑

r

S(r)/rα. (5)

When the exponent α tends to infinity, the sum in equation (4) gets contributions only
from the nearest neighbors of a node. The other terms tend to zero. Thus, ζG(α) tends to the
average vertex degree for the complex network. When α is zero the sum in equation (4) gets
a contribution of one from each node. This means that ζG(α) is N − 1, and hence tends to
infinity as the system size increases.

Furthermore, ζG(α) is a decreasing function of α. Thus, if it is finite for any value of
α, it will remain finite for all higher values of α. If it is infinite for some value of α, it will
remain infinite for all lower values of α. Thus, there is at most one value of α, αtransition, at
which ζG(α) transitions from being infinite to being finite. This is reminiscent of the behavior
of Hausdorff dimension [3]. We define the complex network dimension as the value of the
exponent α at which ζG(α) transitions from being infinite to being finite. To further motivate
the definition of dimension using the complex network zeta function, we consider the regular
discrete d-dimensional lattices Zd as graphs with the edges being the links between the points
along the coordinate axes. Since we are defining distance as the number of edges between
two nodes along the shortest path, the graph distance r corresponds in this case to the distance
defined by the L1 norm:

r = ‖�n‖1 = ‖n1‖ + · · · + ‖nd‖, (6)

where �n is the vector joining the two points on the regular discrete lattice. For the regular
lattices (considered as graphs) the transition of the complex network zeta function from non-
convergence to convergence occurs when α is equal to the dimension d, as one would expect.

In section 3 we study the mean path length. The mean path length is given in terms of the
graph surface function or the complex network zeta function by

� =
∑

r

rS(r)/
∑

r

S(r) = lim
N→∞

ζG(−1)/ζG(0). (7)

In equation (7) we have normalized the mean path length using the number of nodes N in the
denominator, rather than the maximum possible number of edges, N(N −1)/2. For the scaling
behavior of the mean path length with N, this just results in the scaling exponent increasing
by 1. We do this merely for the convenience of working with positive scaling exponents.

3. Mean path length

In this section we calculate the mean path length for the shortcut model. For a d-dimensional
system we expect the mean path length � to scale with size N as N1/d . We show that the
scaling exponent changes sharply as p increases from 0. This provides further evidence for
the sharp transition of the dimension of the shortcut model at p = 0, a property which we
explain in section 4.

When the shortcut probability p = 0 the mean path length scales linearly. We calculated
the mean path lengths using equation (7) for different p for N varying from 1000 to 16 384.
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Figure 4. Scaling exponent for mean path length versus shortcut probability. The vertical axis is
the scaling exponent for the mean path length and the horizontal axis is the shortcut probability.

Table 1. Scaling exponent for mean path length.

Probability Scaling exponent Dimension

0.002 0.95 1.05
0.006 0.86 1.16
0.1 0.74 1.35
0.2 0.62 1.61
0.4 0.48 2.08
0.6 0.50 2.00
0.8 0.50 2.00
1.0 0.51 1.96

Table 1 shows the scaling exponent for �. Figure 4 shows a plot of the scaling exponent
versus shortcut probability. Note, in particular, the rather sharp drop in the exponent from the
value 1 as p increases from 0. The scaling exponent shows the change in behavior from a
one-dimensional system to a two-dimensional system.

In the following section, we provide an explanation for the sharp transition of the
dimension at p = 0.

4. Theory for sharp transition

In this section we show that the dimension of the shortcut model transitions sharply at p = 0.
The sharp transition is related to the combinatorially large increase in the available number of
paths connecting a pair of points as the path length is increased, as explained below.
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For a one-dimensional regular lattice the graph surface function S1(r) in equation (5) is
exactly two for all values of r. This is because there are two nearest neighbors, two next-
nearest neighbors, etc. Thus, the complex network zeta function ζG(α) of equation (4) is
equal to 2ζ(α), where ζ(α) is the usual Riemann zeta function. Thus, the transition from
non-convergence to convergence occurs at α = 1. The graph surface function Sd(r) for a
lattice of dimension d is a polynomial in r of order d − 1 for a given d. From combinatorics it
can be written as

Sd(r) =
d−1∑
i=0

(−1)i2d−i

(
d

i

) (
d + r − i − 1

d − i − 1

)
. (8)

It scales aymptotically as Sd(r) → 2drd−1/�(d) for large r. r → ∞ corresponds to
α → αtransition. Thus, ζG(α) → 2dζ(α − d + 1)/�(d) as α → αtransition. The largest pole of
ζG(α) occurs for α = d.

Now consider the shortcut model which starts with a one-dimensional regular lattice.
When p = 0 the graph surface function is constant as the path length is varied. When
p = 1 the graph surface function increases linearly with the path length r, i.e., S(r) = 4r .
The increase in the graph surface function arises because points which were far apart when
p = 0 are brought closer together by the shortcut edges when p = 1. This much is fairly
straightforward. The interesting question is the behavior when p lies between 0 and 1. Is there
a smooth change in the complexity measure as p is increased? Let us consider a pair of points
which are separated by i shortcut edges and r − i normal edges when p = 1. We show that
with very high probability, the distance between this pair of nodes will be the same as it is in
the two-dimensional limit, for all non-zero values of p. Thus, the transition is sharp, like in a
phase transition. There are(

r

i

)

possible different paths connecting the two points, corresponding to all the possible ways of
choosing the i shortcut edges in the total path of length r. This is a very large number when r
and i are large. Consider a particular path from among this large set. When p lies between 0
and 1 the probability that this particular path will have all the i shortcut edges present is given
by pi . The probability that the particular path does not have all the required shortcut edges is
(1 −pi). Thus, any one particular path will have a small probability of having all the required
shortcut edges present. However, we need only one path from among the huge number of
available paths to have all the required shortcuts. We first estimate the probability pno-paths
that none of the possible paths have the required shortcuts. Since different paths share edges,
the probabilities for different paths are not independent. This complicates the analysis. To get
an order of magnitude estimate, we ignore the correlations between the probabilities for the
different paths. This is similar in spirit to the mean field theories. Ignoring the correlations,
pno-paths is given by

pno-paths = (1 − pi)

(
r

i

)
. (9)

For large r and i, equation (9) can be written as

pno-paths = exp

⎛
⎝−

(
pf

f f
(
1 − f

)1−f

)r
1√

2πrf
(
1 − f

)
⎞
⎠ , (10)
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where f = i/r . pno-paths goes to zero when f < fcritical where fcritical is the solution of the
transcendental equation

p = f (1 − f )
1−f

f . (11)

For a finite fraction of nodes pno-paths rapidly goes to zero when p lies strictly between
0 and 1 because of the combinatorially large value of the exponent. Thus, the probability
ppath-exists that there is at least one path which has all the i required shortcuts

ppath-exists = 1 − (1 − pi)

(
r

i

)
, (12)

is very close to 1. When p lies strictly between 0 and 1, the dependence of the graph surface
function on distance becomes essentially the same as for the case p = 1, i.e., it becomes linear
with slope greater than 4fcritical. This accounts for the sudden transition observed empirically
in earlier studies for the dimension, when p increases from 0.

5. Conclusions

In this work we showed that the dimension of the shortcut model shows a sharp transition at
p = 0. The sharp transition had been conjectured earlier, based on the study of the complex
network zeta function, and on processes like the random walk. The property is now explained
as being due to the large number of potential paths available between a given pair of points.
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